Home » » PERTUMBUMBUHAN, PERKEMBANGAN DAN METABOLISME TANAMAN

PERTUMBUMBUHAN, PERKEMBANGAN DAN METABOLISME TANAMAN

Written By jual peralatan laboratorium on Saturday, January 4, 2014 | 9:50 PM

A. Pertumbumbuhan dan Perkembangan Tanaman
Pertumbuhan adalah berkaitan dengan masalah perubahan dalam besar, jumlah, ukuran atau dimensi tingkat sel organ maupun individu yang bisa diukur dengan berat, ukuran panjang, umur tulang dan keseimbangan metabolic (Soetjiningsih, 1988).
Perkembangan adalah bertambah kemampuan (skill) dalam struktur da fungsi tubuh yang lebih kompleks dalam pola teratur dan dapat diramalkan sebagai hasil proses pematangan. Perkembangan menyangkut adanya proses pematangan.sel-sel tubuh, jaringan tubuh, organ-organ dan sistem organ yang berkembang sedemikian rupa, sehingga masing-msing dapat memenuhi fungsinya termasuk juga emosi, intelektual dan tingkah laku sebagai hasil iteraksi dengan lingkungan (Soetjiningsih, 1988).
Secara umum pertumbuhan dan pekembangan pada tumbuhan diawali untuk stadium zigot yang merupakan hasil pembuahan sel kelamin betina dengan jantan. Pembelahan zigot menghasilkan jaringan meristem yang akan terus membelah dan mengalami diferensiasi.
Terdapat 2 macam pertumbuhan, yaitu:
1. Pertumbuhan Primer
Terjadi sebagai hasil pembelahan sel-sel jaringan meristem primer. Berlangsung pada embrio, bagian ujung-ujung dari tumbuhan seperti akar dan batang.
Embrio memiliki 3 bagian penting :
a. tunas embrionik yaitu calon batang dan daun
b. akar embrionik yaitu calon akar
c. kotiledon yaitu cadangan makanan



Gbr. Embrio Tumbuhan
Pertumbuhan tanaman dapat diukur dengan alat yang disebut auksanometer.
Daerah pertumbuhan pada akar dan batang berdasar aktivitasnya tcrbagi menjadi 3 daerah
a. Daerah pembelahan Sel-sel di daerah ini aktif membelah (meristematik)
b. Daerah pemanjangan. Berada di belakang daerah pembelahan
c. Daerah diferensiasi. Bagian paling belakang dari daerah pertumbuhan. Sel-sel mengalami diferensiasi membentuk akar yang sebenarnya serta daun muda dan tunas lateral yang akan menjadi cabang.

2. Pertumbuhan Sekunder
Merupakan aktivitas sel-sel meristem sekunder yaitu kambium dan kambium gabus. Pertumbuhan ini dijumpai pada tumbuhan dikotil, gymnospermae dan menyebabkan membesarnya ukuran (diameter) tumubuhan.
- Mula-mula kambium hanya terdapat pada ikatan pembuluh, yang disebut kambium vasis atau kambium intravasikuler. Fungsinya adalah membentuk xilem dan floem primer.
- Selanjutnya parenkim akar/batang yang terletak di antara ikatan pembuluh, menjadi kambium yang disebut kambium intervasis.
- Kambium intravasis dan intervasis membentuk lingkaran tahun  bentuk konsentris.
Kambium yang berada di sebelah dalam jaringan kulit yang berfungsi sebagai pelindung. Terbentuk akibat ketidakseimbangan antara permbentukan xilem dan floem yang lebih cepat dari pertumbuhan kulit.
- ke dalam membentuk feloderm : sel-sel hidup ke luar membentuk felem : sel-sel mati

Faktor-faktor pertumbuhan dan perkembangan
A. Faktor Luar
1. Air dan Mineral berpengaruh pada pertumbuhan tajuk 2 akar. Diferensiasi salah satu unsur hara atau lebih akan menghambat atau menyebabkan pertumbuhan tak normal.
2. Kelembaban.
3. Suhu diantaranya mempengaruhi kerja enzim. Suhu ideal yang diperlukan untuk pertumbuhan yang paling baik adalah suhu optimum, yang berbeda untuk tiap jenis tumbuhan.
4. Cahaya mempengaruhi fotosintesis. Secara umum merupakan faktor penghambat.
Etiolasi adalah pertumbuhan yang sangat cepat di tempat yang gelap
Fotoperiodisme adalah respon tumbuhan terhadap intensitas cahaya dan panjang penyinaran.

B. Faktor Dalam
1. Faktor hereditas.
2. Hormon.
a. Auksin
adalah senyawa asam indol asetat (IAA) yang dihasilkan di ujung meristem apikal (ujung akar dan batang). F.W. Went (1928) pertama kali menemukan auksin pada ujung koleoptil kecambah gandum Avena sativa. membantu perkecambahan dominasi apikal
b. Giberelin
Senyawa ini dihasilkan oleh jamur Giberella fujikuroi atau Fusarium moniliformae, ditemukan oleh F. Kurusawa.
Fungsi giberelin :pemanjangan tumbuhan berperan dalam partenokarpi
c. Sitokinin
Pertama kali ditemukan pada tembakau. Hormon ini merangsang pembelahan sel.
d. Gas etilen
Banyak ditemukan pada buah yang sudah tua
e. Asam absiat
f. Florigen
g. Kalin
Hormon pertumbuhan organ, terdiri dari :
Rhizokalin, Kaulokali, Filokalin, Antokalin
h. Asam traumalin atau kambium luka
Merangsang pembelahan sel di daerah luka sebagai mekanisme untuk menutupi luka



Gbr. a. Distribusi Auksin pada Kecambah
b. Pertumbuhan Ujung Akar dan Ujung Batang

B. Metabolisme
Metabolisme merupakan modifikasi senyawa kimia secara biokimia di dalam organisme dan sel. Metabolisme mencakup sintesis (anabolisme) dan penguraian (katabolisme) molekul organik kompleks. Metabolisme biasanya terdiri atas tahapan-tahapan yang melibatkan enzim, yang dikenal pula sebagai jalur metabolisme. Metabolism total merupakan semua proses biokimia di dalam organisme. Metabolisme sel mencakup semua proses kimia di dalam sel. Tanpa metabolisme, makhluk hidup tidak dapat bertahan hidup.
Produk metabolisme disebut metabolit. Cabang biologi yang mempelajari komposisi metabolit secara keseluruhan pada suatu tahap perkembangan atau pada suatu bagian tubuh dinamakan metabolomika.
Metabolisme adalah modifikasi senyawa kimia secara biokimia di dalam organisme dan sel, secara gampangnya yaitu keseluruhan reaksi kimia yang berlangsung di dalam tubuh organisme. Reaksi-reaksi tersebut adalah dasar dari kehidupan, yang membuat sel dapat tumbuh dan bereproduksi, mempertahankan strukturnya, dan merespon lingkungannya. Metabolisme biasanya terdiri atas tahapan-tahapan yang melibatkan enzim, yang dikenal pula sebagai jalur metabolisme. Secara keseluruhan, metabolisme bertanggung jawab terhadap pengaturan materi dan sumber energi dari sel. Tugas metabolisme inilah yang menjadikan metabolisme suatu reaksi yang sangat penting bagi kelangsungan hidup makhluk hidup.
Karena metabolisme merupakan keseluruhan reaksi yang terjadi di dalam tubuh organisme, tentunya metabolisme tidak hanya terdiri dari satu macam reaksi saja. Secara umum, metabolisme terbagi atas 2 reaksi
1. Anabolisme (reaksi penyusunan)
2. Katabolisme (reaksi pemecahan)

Walaupun metabolisme hanya terdiri dari dua macam reaksi, baik anabolisme maupun katabolisme bukan merupakan suatu reaksi yang sederhana, melainkan terdiri dari tahapan-tahapan reaksi yang kompleks.
Metabolisme juga merupakan suatu totalitas proses kimia yang berlangsung di dalam sel. Proses tersebut hanya dapat berlangsung jika terdapat materi atau zat yang bereaksi dan didukung energi proses metabolisme tersebut. Di samping dua komponen tersebut, masih ada lagi molekul yang mutlak diperlukan agar metabolisme berlangsung, yaitu ATP dan enzim. ATP (Adenosin Trifosfat) adalah molekul nukleotida berenergi tinggi yang tersusun atas gula pentosa, basa nitrogen adenin, dan mengikat tiga gugus fosfat (trifosfat). Kandungan energi tinggi ini terdapat pada ikatan antara gugus fosfat 1 dan 2 serta gugus fosfat 2 dan 3. Kedua ikatan fosfat ini bersifat labil. Jika gugus 3 dilepas, akan dihasilkan senyawa dengan dua gugus fosfat, yaitu Adenosin Difosfat (ADP) dan dibebaskan banyak energi. Jika gugus 2 juga dilepas, akan dihasilkan senyawa dengan satu gugus fosfat, yaitu Adenosin Monofosfat (AMP) dan juga dibebaskan banyak energi.
Metabolisme sebuah organisme menentukan zat mana yang bergizi dan mana yang beracun bagi organisme tersebut. Contohnya, beberapa organisme prokariot menggunakan hidrogen sulfida sebagai bahan gizi, di sisi lain gas ini merupakan racun bagi hewan. Kecepatan metabolisme, tingkat metabolik, juga mempengaruhi seberapa banyak makanan yang dibutuhkan organisme.
Ciri-ciri yang mencolok dari metabolisme adalah kesamaan dari jalur metabolik dasar antara spesies organisme yang kadang sangat berbeda. Contohnya, serangkaian senyawa antara pada siklus asam sitrat secara umum ditemukan diantara semua makhluk hidup, dari bakteri uniseluler Escherichia coli sampai organisme multiseluler yang sangat besar seperti gajah. Struktur metabolik seperti ini kemungkinan sebagian besar adalah hasil dari efisiensi tinggi dari jalur-jalur reaksi diatas, dan hasil dari penampakan permulaannya dalam sejarah evolusi.
Anabolisme adalah suatu peristiwa perubahan senyawa sederhana menjadi senyawa kompleks, nama lain dari anabolisme adalah peristiwa sintesis atau penyusunan. Anabolisme memerlukan energi, misalnya : energi cahaya untuk fotosintesis, energi kimia untuk kemosintesis.
Anabolisme adalah proses sintesis molekul kompleks dari senyawa-senyawa kimia yang sederhana secara bertahap. Proses ini membutuhkan energi dari luar. Energi yang digunakan dalam reaksi ini dapat berupa energi cahaya ataupun energi kimia. Energi tersebut, selanjutnya digunakan untuk mengikat senyawa-senyawa sederhana tersebut menjadi senyawa yang lebih kompleks. Jadi, dalam proses ini energi yang diperlukan tersebut tidak hilang, tetapi tersimpan dalam bentuk ikatan-ikatan kimia pada senyawa kompleks yang terbentuk.
Selain dua macam energi diatas, reaksi anabolisme juga menggunakan energi dari hasil reaksi katabolisme, yang berupa ATP. Agar asam amino dapat disusun menjadi protein, asam amino tersebut harus diaktifkan terlebih dahulu. Energi untuk aktivasi asam amino tersebut berasal dari ATP. Agar molekul glukosa dapat disusun dalam pati atau selulosa, maka molekul itu juga harus diaktifkan terlebih dahulu, dan energi yang diperlukan juga didapat dari ATP. Proses sintesis lemak juga memerlukan ATP.
Anabolisme meliputi tiga tahapan dasar. Pertama, produksi prekursor seperti asam amino, monosakarida, dan nukleotida. Kedua, pengaktivasian senyawa-senyawa tersebut menjadi bentuk reaktif menggunakan energi dari ATP. Ketiga, penggabungan prekursor tersebut menjadi molekul kompleks, seperti protein, polisakarida, lemak, dan asam nukleat. Anabolisme yang menggunakan energi cahaya dikenal dengan fotosintesis, sedangkan anabolisme yang menggunakan energi kimia dikenal dengan kemosintesis.
Senyawa kompleks yang disintesis organisme tersebut adalah senyawa organik atau senyawa hidrokarbon. Autotrof, seperti tumbuhan, dapat membentuk molekul organik kompleks di sel seperti polisakarida dan protein dari molekul sederhana seperti karbon dioksida dan air. Di lain pihak, heterotrof, seperti manusia dan hewan, tidak dapat menyusun senyawa organik sendiri. Jika organisme yang menyintesis senyawa organik menggunakan energi cahaya disebut fotoautotrof, sementara itu organisme yang menyintesis senyawa organik menggunakan energi kimia disebut kemoautotrof.
Reaksi anabolisme menghasilkan senyawa-senyawa yang sangat dibutuhkan oleh banyak organisme, baik organisme produsen (tumbuhan) maupun organisme konsumen (hewan, manusia). Beberapa contoh hasil anabolisme adalah glikogen, lemak, dan protein berguna sebagai bahan bakar cadangan untuk katabolisme, serta molekul protein, protein-karbohidrat, dan protein lipid yang merupakan komponen struktural yang esensial dari organisme, baik ekstrasel maupun intrasel.
Katabolisme adalah serangkaian reaksi yang merupakan proses pemecahan senyawa kompleks menjadi senyawa-senyawa yang lebih sederhana dengan membebaskan energi, yang dapat digunakan organisme untuk melakukan aktivitasnya. Termasuk didalamnya reaksi pemecahan dan oksidasi molekul makanan seperti reaksi yang menangkap energi dari cahaya matahari. Fungsi reaksi katabolisme adalah untuk menyediakan energi dan komponen yang dibutuhkan oleh reaksi anabolisme.
Sifat dasar yang pasti dari reaksi katabolisme berbeda pada setiap organisme, dimana molekul organik digunakan sebagai sumber energi pada organotrof, sementara litotrof menggunakan substrat anorganik dan fototrof menangkap cahaya matahari sebagai energi kimia. Tetapi, bentuk reaksi katabolisme yang berbeda-beda ini tergantung dari reaksi redoks yang meliputi transfer elektron dari donor tereduksi seperti molekul organik, air, amonia, hidrogen sulfida, atau ion besi ke molekul akseptor seperti oksigen, nitrat, atau sulfat. Pada hewan reaksi katabolisme meliputi molekul organik kompleks yang dipecah menjadi molekul yang lebih sederhana, seperti karbon dioksida dan air. Pada organisme fotosintetik seperti tumbuhan dan sianobakteria, reaksi transfer elektron ini tidak menghasilkan energi, tetapi digunakan sebagai tempat menyimpan energi yang diserap dari cahaya matahari.
Urutan yang paling umum dari reaksi katabolik pada hewan dapat dibedakan menjadi tiga tahapan utama. Pertama, molekul organik besar seperti protein, polisakarida, atau lemak dicerna menjadi molekul yang lebih kecil di luar sel. Kemudian, molekul-molekul yang lebih kecil ini diambil oleh sel-sel dan masih diubah menjadi molekul yang lebih kecil, biasanya asetil koenzim A (Asetil KoA), yang melepaskan energi. Akhirnya, kelompok asetil pada KoA dioksidasi menjadi air dan karbon dioksida pada siklus asam sitrat dan rantai transpor elektron, dan melepaskan energi yang disimpan dengan cara mereduksi koenzim Nikotinamid Adenin Dinukleotida (NAD+) menjadi NADH.

0 comments:

Post a Comment